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ABSTRACT

Classic tree-based ensembles generalize better than any single decision tree. In
contrast, recent empirical studies find that modern ensembles of (overparame-
terized) neural networks may not provide any inherent generalization advantage
over single but larger neural networks. This paper clarifies how modern overpa-
rameterized ensembles differ from their classic underparameterized counterparts,
using ensembles of random feature (RF) regressors as a basis for developing the-
ory. In contrast to the underparameterized regime, where ensembling typically
induces regularization and increases generalization, we prove that infinite ensem-
bles of overparameterized RF regressors become pointwise equivalent to (single)
infinite-width RF regressors. This equivalence, which is exact for ridgeless models
and approximate for small ridge penalties, implies that overparameterized ensem-
bles and single large models exhibit nearly identical generalization. As a conse-
quence, we can characterize the predictive variance amongst ensemble members,
and demonstrate that it quantifies the expected effects of increasing capacity rather
than capturing any conventional notion of uncertainty. Our results challenge com-
mon assumptions about the advantages of ensembles in overparameterized set-
tings, prompting a reconsideration of how well intuitions from underparameter-
ized ensembles transfer to deep ensembles and the overparameterized regime.

1 INTRODUCTION

Ensembling is one of the most well-established techniques in machine learning (e.g. Schapire, 1990;
Hansen & Salamon, 1990; Opitz & Maclin, 1999; Dietterich, 2000). Historically, most ensembles
aggregated component models that are simple by today’s standards. Common techniques like bag-
ging (Breiman, 1996), feature selection (Breiman, 2001), random projections (Kabán, 2014; Thanei
et al., 2017), and boosting (Freund, 1995; Chen & Guestrin, 2016) were developed and analyzed
assuming decision trees, least-squares regressors, and other underparameterized component models
incapable of achieving near-zero training error. Crucially, the resulting ensembles achieve better
generalization than what could be achieved by any individual component model.

Recently, researchers and practitioners have turned to ensembling large overparameterized models,
such as neural networks, which have more than enough capacity to memorize training datasets and
are typically trained with little to no regularization. Like ensembles of underparameterized mod-
els, ensembles of large neural networks are often used to reduce generalization error (Lee et al.,
2015; Fort et al., 2019). Motivated by practical effectiveness and heuristics from classic ensembles
(Mentch & Hooker, 2016), some have further argued that the predictive variance amongst compo-
nent models in these so-called deep ensembles is a well-calibrated notion of uncertainty (Lakshmi-
narayanan et al., 2017; Ovadia et al., 2019; Gustafsson et al., 2020) that can be used on downstream
decision-making tasks (Gal et al., 2017; Yu et al., 2020).

While there are few theoretical works analyzing these modern overparameterized ensembles, recent
empirical evidence suggests that intuitions from their underparameterized counterparts do not hold
in this new regime. For example, classic methods to increase diversity amongst component models,
such as bagging, are harmful for deep ensembles (Nixon et al., 2020; Jeffares et al., 2024; Abe et al.,
2024) despite being nearly universally beneficial for underparameterized ensembles. Moreover,
several recent studies question whether deep ensembles offer significant improvements in robustness
and uncertainty quantification over what can be achieved by a single (but larger) neural network
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(Abe et al., 2022; Theisen et al., 2024; Chen et al., 2024). These results suggest that an ensemble
of (large) overparameterized networks may not differ fundamentally from a single (extremely large)
neural network, in contrast to the underparameterized regime where ensembles are a fundamentally
different class of predictors Schapire (1990); Breiman (2001); Kabán (2014).

To address this divergence and verify recent empirical findings on deep ensembles, we develop a the-
oretical characterization of ensembles in the overparameterized regime, with the goal of contrasting
against (traditional) underparameterized ensembles. We answer the following questions:

1. Do large ensembles of overparameterized models differ from single (very large) models
trained on the same data? Does the capacity of the component models affect this difference?

2. Under a fixed parameter/computation budget, does an ensemble of overparameterized mod-
els provide additional generalization or robustness benefits over a single (larger) model?

3. What does the predictive variance of overparameterized ensembles measure, and does it
relate to different notions of uncertainty?

To answer these questions, we analyze ensembles of overparameterized random feature (RF) linear
regressors, a widely used theoretically-tractable approximation of neural networks (e.g. Belkin et al.,
2018; Bartlett et al., 2020; Mei & Montanari, 2022). These models can be interpreted as neural
networks where only the last layer is trained (e.g. Rudi & Rosasco, 2017; Belkin et al., 2019) or as
first-order Taylor approximations of neural networks (e.g. Jacot et al., 2018). By averaging models
that differ solely in their random features, we emulate the common practice of ensembling neural
networks that differ only by random initialization (Lakshminarayanan et al., 2017). Our analysis
focuses on the practically relevant regime where regressors are trained with little to no regularization.

1.1 RELATED WORK

Random feature models. RF models perform regression on a random subset or projection of a
high- (or infinite-) dimensional feature representation. Originally introduced as a scalable approx-
imation to kernel machines (Rahimi & Recht, 2007; 2008a;b), RF regressors have seen growing
theoretical interest as simplified models of neural networks (e.g. Belkin et al., 2019; Jacot et al.,
2018; Bartlett et al., 2020; Mei & Montanari, 2022; Simon et al., 2024). This approximation of
neural networks becomes exact in the limit of infinite width (e.g. Jacot et al., 2018; Lee et al., 2019).

Underparameterized random feature models and ensembles. There are many works theoreti-
cally characterizing ensembles of tree-based models (e.g. Schapire & Singer, 1998; Sexton & Laake,
2009; Wager et al., 2014; Mentch & Hooker, 2016). Here, we restrict our discussion to analyses of
(ensembles of) RF regressors. Most works of this nature analyze underparameterized models, where
the number of random features (i.e., the width) is assumed to be far fewer than the number of data
points. In the underparameterized fixed design setting, the infinite ensemble of unregularized RF
regressors achieves the same generalization error as ridge regression on the original (unprojected)
inputs (Kabán, 2014; Thanei et al., 2017; Bach, 2024a). We emphasize the distinction between
underparameterized component models and their aggregated prediction: i.e., the ensemble of un-
regularized regressors is equivalent to a regularized predictor. (We provide theoretical analysis in
Appx. D that further demonstrates ridge-like behaviour of underpameterized RF ensembles.)

Overparameterized random feature models. Recent works on RF models have focused on the
overparameterized regime, often using high-dimensional asymptotics to characterize generalization
error (Adlam & Pennington, 2020; Hastie et al., 2022; Mei & Montanari, 2022; Loureiro et al.,
2022; Bach, 2024a). Implicit in many works is an assumption of Gaussian universality, in which
the marginal distributions over the random features are replaced by moment-matched Gaussians.
While such assumptions are common throughout asymptotic random matrix theory (e.g. Tao, 2012),
our work aims to establish more general results that hold for more general random features. We
demonstrate—both theoretically and empirically—that Gaussianity may be an inappropriate approx-
imation for neural network features when comparing the pointwise behaviour of ensembles versus
single models.

The benefits of overparameterization and ensembling for out-of-distribution generalization in ran-
dom feature models have been analyzed by Hao et al. (2024), who provide lower bounds on OOD
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Figure 1: An infinite ensemble of overparameterized RF models is equivalent to a single
infinite-width RF model. (Left) We show a sample of 100 finite-width RF models (blue) with
ReLU activations trained on the same N = 6 data points. Additionally, we show the single infinite-
width RF model (pink). The finite-width predictions concentrate around the infinite-width model.
(Right) We again show the single infinite-width RF model (pink) and the “infinite” ensemble of
M = 10, 000 RF models (blue). We note no perceptible difference between the two.

risk improvements when increasing capacity or using ensembles. Their work focuses on non-
asymptotic guarantees under specific distributional shifts, while ours examines the (asymptotic)
equivalence of ensembles and single large models under minimal assumptions. Most related to our
work is Jacot et al. (2020), who analyze the pointwise expectation and variance of ridge-regularized
RF models with Gaussian process (GP) features. We extend this by significantly weakening the as-
sumptions on random features, demonstrating that the convergence of infinite ensembles to infinite-
width single models is a general property of overparameterization, independent of Gaussianity or
specific feature distributions.

1.2 CONTRIBUTIONS

We consider ensembles of overparameterized RF regressors in both the ridgeless and small ridge
regimes. Unlike prior work, we make minimal assumptions about the distribution of the random
features. Therefore, our results can be assumed to hold for most RF ensembles rather than only those
that are compositions of GP-random features. Concretely, we make the following contributions:

To answer Question 1: we show that the average ridgeless RF regressor is pointwise equivalent
to its corresponding ridgeless kernel regressor (Theorem 1), implying that an infinite ensemble of
overparameterized RF models is exactly equivalent to a single infinite-width RF model. We further
show that this equivalence approximately holds in the small ridge regime (Theorem 2).

To answer Question 2: we use rates established in prior work to demonstrate that the variance
reduction from ensembling overparameterized RF regressors is very similar to increasing the number
of features in a single model. This shows that ensembles do not offer additional generalization or
robustness advantages over single models under fixed parameter budgets (see Sec. 3.2).

To answer Question 3: we show that the predictive variance in an overparameterized ensemble is
the expected squared difference between the predictions from a (finite-width) RF regressor and its
corresponding kernel regressor (i.e., the infinite-width model). With this finding, we demonstrate
that ensemble variance differs from conventional uncertainty quantifications, except in practically
unrealistic cases where the random features are sampled from a GP (see Sec. 3.2).

Altogether, these results support recent empirical findings that deep ensembles offer few general-
ization and uncertainty quantification benefits over single models (Abe et al., 2022; Theisen et al.,
2024). Our theory and experiments demonstrate that these phenomena are not specific to neural
networks but are more general properties of ensembles in the overparameterized regime.
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2 SETUP

We work in a regression setting. The training dataset D = {(xi, yi)}Ni=1 ∈ (X ×R)N is assumed to
be a fixed set of size N . The vector y ∈ RN represents the concatenation of all training responses.

We consider RF models adhering to the form hW(x) = 1√
D

∑D
i=1 ϕ(ωi, x)θi, where θi are learned

parameters, W = {ωi}Di=1 ∈ ΩD are i.i.d. draws from some distribution π(·), and ϕ : Ω× X → R
is a feature extraction function. In the case of a ReLU-based RF model with p-dimensional inputs,
we have X = Ω = Rp and ϕ(ωi, x) = max(0, ω⊤

i x). Though RF models cannot fully explain
the behaviour of neural networks (e.g. Ghorbani et al., 2019; Li et al., 2021; Pleiss & Cunningham,
2021), they can be a useful proxy for understanding the effects of overparameterization and capacity
on generalization (e.g. Belkin et al., 2019; Adlam & Pennington, 2020; Mallinar et al., 2022).

Notation. For any x, x′ ∈ X , let k(x, x′) = Eω[ϕ(ω, x)ϕ(ω, x
′)] denote the second moment of

the feature extraction function ϕ(ω, ·). We note that the function k is a positive definite kernel
function, and we will refer to it as such. We will use the matrices K := [k(xi, xj)]ij ∈ RN×N and
ΦW := [ϕ(ωj , xi)]ij ∈ RN×D to denote the kernel function applied to all training data pairs and the
feature extraction function applied to all data/feature combinations, respectively. We will drop the
subscript W when the set of random features is clear from context. We assume that K is invertible.

Throughout our analysis, it will be useful to consider the “whitened” feature matrix W = R−⊤Φ ∈
RN×D where R⊤R = K is the Cholesky decomposition of the kernel matrix K. When considering
a test point x∗ ∈ X (or equivalently a set of test points), we extend the K, R, Φ, W notation by[

K [k(xi, x
∗)]i

[k(x∗, xj)]j k(x∗, x∗)

]
=

[
R c
0 r⊥

]⊤[
R c
0 r⊥

]
,

[
W
w⊤

⊥

]
=

[
R c
0 r⊥

]−⊤[
Φ

[ϕ(ωi, x
∗)]i

]
. (1)

For fixed training/test points, EW [WW⊤] = D · I , Ew⊥ [w
⊤
⊥w⊥] = D and EW,w⊥ [w

⊤
⊥W

⊤] = 0
which can be directly derived from EΦ[ΦΦ

⊤] = D ·K (and similar properties for ϕ∗). Moreover,
the columns [wi;w⊥i] of [W ;w⊥] are i.i.d. since they are transformations of the i.i.d. columns of Φ.

Overparameterized ridge/ridgeless regressors and ensembles. As our focus is the overparame-
terized regime, we assume a computational budget of D > N features (W = {ω1, . . . , ωD} ∼ πD)
to construct an RF regressor hW(x) = 1√

D
ϕW(x)⊤θ. We train the regressor parameters θ to min-

imize the loss ∥ 1√
D
ΦWθ − y∥22 + λ∥θ∥22 for some ridge parameter λ ≥ 0. When λ > 0 this

optimization problem admits the closed-form solution θ
(RR)
W,λ = 1√

D
Φ⊤

W
(

1
D · ΦWΦ⊤

W + λI
)−1

y.

Although the learning problem is underspecified when λ = 0 (i.e. in the ridgeless case), the implicit
bias of (stochastic) gradient descent initialized at zero leads to the minimum norm interpolating
solution θ

(LN)
W = 1√

D
(Φ)⊤

(
1
D · ΦΦ⊤)−1

y. We denote the resulting ridge(less) regressors as

h
(LN)
W (·) := 1√

D
[ϕ(ωj , ·)]j θ

(LN)
W , h

(RR)
W,λ (·) := 1√

D
[ϕ(ωj , ·)]j θ

(RR)
W,λ .

We also consider ensembles of M ridge(less) regressors. We assume that each is trained on a dif-
ferent set of i.i.d. D > N random features W1, . . . ,WM ∼ πD but trained on the same training
set. Thus, the only source of randomness in these ensembles comes from the random selection of
features Wi, analogous to the standard training procedure of deep ensembles (Lakshminarayanan
et al., 2017). The ensemble prediction is given by the arithmetic average of the individual models

h̄W1:M
(·) = 1

M

∑M
m=1 hWm,λ(·) = 1

M

∑M
m=1

[
1
D [ϕ(ωmj , ·)]j Φ⊤

Wm

(
1
D · ΦWm

Φ⊤
Wm

+ λI
)−1
]
y.

Assumptions. A key difference between this paper and prior literature is the set of assumptions
about the random feature distribution π(·). It is commonly assumed that entries in the extended
whitened feature matrix [W ;w⊥] are i.i.d. draws from a zero-mean sub-Gaussian distribution (e.g.
Bartlett et al., 2020; Bach, 2024b), which implicitly places constraints on ϕ(·, ·) and π(·). Many
works further assume Gaussian universality—i.e. that the distribution of W,w⊥ can be modeled by
i.i.d. standard Gaussian random variables (Adlam & Pennington, 2020; Mei & Montanari, 2022;
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Figure 2: Empirically, the term E[w⊤
⊥W

⊤(WW⊤)−1] is consistently zero. We plot the distri-
bution of the first index of w⊤

⊥W
⊤(WW⊤)−1, which captures the difference between the infinite-

width single model and a smaller overparameterized RF model (see Eq. (2)). (Left) We use ReLU
as activation function, xi ∈ R, and N = 6, D = 200. (Right) We use the Gaussian Error activation
function, the California Housing dataset (Kelley Pace & Barry, 1997), and N = 12, D = 200.

Simon et al., 2024)—implying that ϕ(ωi, ·) are draws from a Gaussian process with covariance k.1
We argue this assumption is unrealistic when considering features that resemble those from neural
networks. For example, ReLU features are always non-negative and thus the mean of W = R−⊤Φ
is almost surely non-zero. Moreover, if X ⊆ Rp with p < N , then feature extraction functions
of the form σ(ω⊤x) are fully specified by a p-dimensional random variable. Thus, knowing N
evaluations of ω⊤

j xi allows one to infer ωj , making w⊥ deterministic given W . We instead consider
the following less restrictive assumptions about W , w⊥, which implicitly specify properties of π(·):
Assumption 1 (Assumption of subexponentiality). We have that

1. wiw⊥i (where wi is the ith column of W ) is sub-exponential ∀i ∈ {1, ..., D} and

2.
∑D

i=1 wiw
⊤
i is almost surely positive definite for any D ≥ N .

The first condition is fulfilled whenever w⊥i and w⊤
i are sub-Gaussian (but potentially dependent),

which is true when the features come from activation functions with sub-Gaussian weights. The
second condition is equivalent to Φ having almost surely full rank, which is not true for ReLUs and
leaky-ReLUs features but which is true for arbitrarily precise approximations thereof.2 Note we
make no assumptions about the mean or independence of the entries in a given column of [W ;w⊥].

3 MAIN RESULTS

3.1 EQUIVALENCE OF INFINITE ENSEMBLES AND THE INFINITE-WIDTH SINGLE MODELS

We at first assume an infinite computational budget and consider the following two limiting predic-
tors, for which we will show pointwise equivalence in predictions:

1. An infinite-width least norm predictor, h(LN)
∞ , the a.s. limit of h(LN)

W as |W| = D → ∞
2. An infinite ensemble of finite-width least norm predictors, h̄(LN)

∞ , which is the almost sure
limit of h̄(LN)

W1:M
as M → ∞, with N < D < ∞ remaining constant.

These limiting predictors do not only serve as approximations to large ensembles and very large
single models but will also prove useful in characterizing the variance and generalization error of
finite overparameterized ensembles, as discussed in Sec. 3.2.

1Assume the entries of W and w⊥ are i.i.d. Gaussian. Then the ith feature applied to training/test inputs
([R⊤wi; c

⊤wi+r⊥w⊥i]) is multivariate Gaussian. This fact holds for any train/test data; thus the ith feature is
a GP by definition (e.g. Rasmussen & Williams, 2006, Ch. 2).

2E.g., ϕα(ω, x) =
1
α
log(1 + eαω⊤x), α > 0 yields an a.s. full-rank Φ, and ϕα(ω, x)

α→∞→ ReLU(ω⊤x).
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Figure 3: Infinite overparameterized ensembles are equivalent to a single infinite-width model
regardless of width, while underparameterized ensembles behave fundamentally differently.
We present the average absolute difference between the infinite ensemble and the single infinite
model for different feature counts D. (Left) ReLU activations, N = 6, data are from the setting in
Fig. 1. (Right) softplus activations, N = 12, California Housing dataset. Both exhibit a “hockey
stick” pattern: there is a substantial difference between the underparameterized ensemble and the
infinite-width model; however, this difference vanishes in the overparameterized regime.

Define kN (·) : X → RN as the vector of kernel evaluations with the training data kN (·) =

[k(x1, ·) · · · k(xN , ·)]⊤ ∈ RN . As D → ∞, the minimum norm interpolating model converges
pointwise almost surely to the ridgeless kernel regressor by the Strong Law of Large Numbers:

h
(LN)
W (·) a.s.−→ h(LN)

∞ (·), h(LN)
∞ (·) := kN (·)⊤K−1y.

On the other hand, using W and w⊥ as introduced in Sec. 2 we can rewrite the infinite ensemble
prediction h̄

(LN)
∞ (x∗) as (for a derivation of this, see Appx. B.1)

h̄(LN)
∞ (x∗) = h(LN)

∞ (x∗) + r⊥EW,w⊥

[
w⊥⊤W⊤ (WW⊤)−1

]
R−⊤y (2)

To prove the pointwise equivalence of the infinite ensemble and infinite-width single model, we need
to show that EW,w⊥ [w

⊤
⊥W

⊤(WW⊤)−1] term in Eq. (2) is zero. Note that this result trivially holds
when the entries of W and w⊥ are i.i.d., as assumed in prior work (e.g. Jacot et al., 2020). Here, we
show that this term is zero even when w⊥ and W are dependent, which—as described in Sec. 2—is
a more realistic assumption for neural network features. Empirically, in Fig. 2 we observe that the
entries of the random variable w⊤

⊥W
⊤(WW⊤)−1 ∈ RN have a mean of zero for both ReLU and

Gaussian error function features, both of which violate independence assumptions between w⊥ and
W (as noted in Sec. 2). We formalize this observation in the following lemma:
Lemma 1. Under Assumption 1, it holds that EW,w⊥ [w

⊤
⊥W

⊤(WW⊤)−1] = 0.

Proof sketch. (See Appx. B.1 for a full proof.) We start by applying the Woodbury formula to
express the matrix inverse (WW⊤)−1 as a decomposition involving the matrix A−i = (WW⊤ −
wiw

⊤
i ) and the individual column wi of W . This decomposition yields the expression:

w⊤
⊥W

⊤(WW⊤)−1 =
∑D

i=1(w⊥iw
⊤
i )/(1 + w⊤

i A
−1
−iwi)A−i

Next, using sub-exponential concentration inequalities in conjunction with the Weak Law of Large
Numbers, we show that the conditional expectation Ew⊥i,wi

[
(w⊥iw

⊤
i )/(1 + w⊤

i A
−1
−iwi) | A−i

]
exists and is zero for all invertible A−i. This result implies that: E[w⊥W

⊤(WW⊤)−1] =∑D
i=1 EA−i [Ew⊥i,wi [(w⊥iw

⊤
i )/(1 + w⊤

i A
−1
−iwi)]A

−1
−i ] = 0.

Combining Lemma 1 and Eq. (2) yields the pointwise equivalence of h̄(LN)
∞ and h

(LN)
∞ :

Theorem 1 (Equivalence of infinite-width single model and infinite ensembles). Under Assump-
tion 1, the infinite ensemble of finite-width (but overparameterized) RF regressors h̄(LN)

∞ is pointwise
almost surely equivalent to the (single) infinite-width RF regressor h(LN)

∞ .
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Figure 4: Ensemble variance (left) and Bayesian notions of uncertainty (right) can differ signif-
icantly. For N = 6 and D = 200 with ReLU activations, we show the overparameterized ensemble
variance (left) and the posterior variance of a Gaussian process with prior covariance k(·, ·) (right)
across the input range. Empirically, we observe substantial differences between the two quantities.

This result shows that, in overparameterized RF regression, ensembling yields exactly the same pre-
dictions as simply increasing the capacity of a single model (see Fig. 1 for a visualization). Conse-
quently, we should not expect substantial differences in generalization between large single models
and overparameterized ensembles, consistent with recent empirical findings by Abe et al. (2022;
2024); Theisen et al. (2024). Importantly, our result in Theorem 1 holds under minimal assumptions
and is independent of Gaussianity, demonstrating that the equivalence between infinite ensembles
and infinite-width single models is a fundamental property of overparameterization, applicable to
models with non-Gaussian activations and dependent features.

We emphasize a contrast with the underparameterized regime, where RF ensembles match the gen-
eralization error of kernel ridge regression (see Appx. D or Bach, 2024a, Sec. 10.2.2). While width
controls the implicit ridge parameter in the underparameterized regime (see Sec. 1.1), width does
not affect the ensemble predictor in the overparameterized regime. We confirm this difference in
Fig. 3 which shows that RF ensembles are equivalent to the ridgeless kernel regressor when D > N
but not when D < N .

3.2 VARIANCE OF ENSEMBLE PREDICTIONS

We now analyze the predictive variance amongst component models in an overparameterized RF
ensemble, a quantity used to quantify predictive uncertainty and provide insights about the general-
ization error. Using Theorem 1, the variance of the predictions of a single RF model with respect to
its random features can be expressed as (see Appx. B.2 for a derivation)

VarW [h
(LN)
W (x∗)] = r2⊥

(
y⊤R−1 EW,w⊥ [(WW⊤)−TWw⊥w

⊤
⊥W

⊤(WW⊤)−1]R−⊤y
)
. (3)

In the special case where W and w⊥ are i.i.d. standard normal, this expression simplifies to

VarW [h
(LN)
W (x∗)] = r2⊥

(
∥h(LN)

∞ ∥2
k

D−N−1

)
, (4)

where ∥h(LN)
∞ ∥2K represents the squared norm of h(LN)

∞ in the RKHS defined by the kernel k(·, ·).
From this equation, we note that the variance decreases with RF regressor width as ∼ 1/D, scales
with the complexity of h

(LN)
∞ , and only depends on x∗ through the quantity r2⊥ (a term we will

analyze later).

Unfortunately, EW,w⊥ [(WW⊤)−TWw⊥w
⊤
⊥W

⊤(WW⊤)−1] generally does not have simple ex-
pression for arbitrary W,w⊥ satisfying Assumption 1. Without assuming Gaussian universality, the
variance depends on x∗ through both r2⊥ as well as through the expectation from Eq. (3) involving
w⊥. Still, prior works and empirical results (see Fig. 5 and Appx. A.3) suggest that the variance of
RF models decays with ∼ 1/D under a variety of distributions (e.g. Adlam & Pennington, 2020).

Implications for uncertainty quantification. A common approach to uncertainty quantification
with ensembles is to examine the predictive variance of their members at a specific test point x∗

7
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Figure 5: The variance and generalization error of overparameterized ensembles and single
large models scale similarly with the total number of features. (Left) We show that the variance
of a single model with MD features decays as ∼ 1

MD , consistent with the scaling behavior of the
variance in an ensemble. (Right) We present the generalization error of an ensemble of M models,
each with D = 200 features, compared to a single model with MD total features. Both exhibit
nearly identical dependence on the total feature budget. The results use a ReLU activation function,
the California Housing dataset, and N = 12.

(Lakshminarayanan et al., 2017). Before diving into an analysis of Eqs. (3) and (4), it is worth
reflecting on the implications that Theorem 1 has for ensemble variance as uncertainty quantification.
Because the expected overparameterized RF model is the infinite-width RF model, we can exactly
characterize the ensemble variance as the expected squared difference between the predictions of a
large (i.e., infinite-width) model versus a smaller (finite-width but still overparameterized) model.
This reveals that ensemble variance provides a non-standard notion of uncertainty, differing from
both conventional frequentist and Bayesian interpretations.

A notable exception is when W and w⊥ are i.i.d. standard normal. Recall by Eq. (4) that the variance
under the Gaussian universality assumption only depends on x∗ through the quantity r2⊥. By Eq. (1)
we see that r2⊥ is equal to k(x∗, x∗)− kN (x∗)⊤K−1kN (x∗), which is exactly the Gaussian process
posterior variance with prior covariance k(·, ·) (e.g. Rasmussen & Williams, 2006). In this case,
ensembles provide a scaled version of a classic Bayesian estimate of uncertainty.

However, relaxing from Gaussianity to Assumption 1 makes the relationship between ensemble vari-
ance and r2⊥ more complex, as the independence between W and w⊥ is no longer guaranteed. As
can be seen in Eq. (3), the variance generally depends on x∗ through both r2⊥ and a complicated
expectation involving W and w⊥. In Appx. B.2 we demonstrate with a simple example that this
expectation can indeed depend on x∗, implying that ensemble variance does not exactly correspond
to a scalar multiple of r2⊥. In our numerical experiments using realistic (i.e., non-Gaussian) ran-
dom feature distributions, (Fig. 4 and Appx. A.3), we observe significant deviations between the
ensemble variance and the Gaussian process posterior variance, further implying that one cannot
view ensembles through a classic framework of uncertainty. These discrepancies are particularly
important for uncertainty estimation in safety-critical applications or active learning (e.g. Gal et al.,
2017; Beluch et al., 2018).

Ensembles versus larger single models under a finite feature budget. Our characterization of
ensemble variance also holds implications for the generalization error of ensembles versus single
models under a finite computational budget. We compare ensembles of M models with D features
each (h̄(LN)

W1:M
= 1

M

∑M
m=1 h

(LN)
Wm

) to single models with MD features h(LN)
W∗ (·) (i.e., here |Wm| = D

for all m and |W∗| = MD). The expected generalization error of either predictor can be decom-
posed into standard bias and variance terms:

Eh [L (h)] := Eh[ Ex[(h(x)− E[y | x])2] = L (Eh [h]) + Ex [Varh (h(x))] .

Since h
(LN)
W∗ and h

(LN)
W1

, . . . , h
(LN)
WM

share the same expected predictor (as established in Theo-

rem 1), the only difference in the generalization of h
(LN)
W∗ and h̄

(LN)
W1:M

arises from their vari-

ances. Due to the independence between ensemble members, we have that VarW1:M
[h̄

(LN)
W1:M

(x)] =

8
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Figure 6: Lipschitz continuity of predictions for an infinite ensemble and kernel regressor with
respect to the ridge parameter. (Left) We plot the |h̄(RR)

∞,λ (x∗)− h̄
(LS)
∞ (x∗)| as a function of λ for

500 test points. (Right) We show the evolution of |h(RR)
∞,λ (x∗)− h

(LS)
∞ (x∗)| for the same test points.

Both plots use the ReLU activation function and the California Housing Dataset with N = 12 and
D = 200. While the direct difference |h̄(RR)

∞,λ (x∗)−h
(RR)
∞,λ (x∗)| is not shown due to reasons outlined

in Appx. A.4, it can be bounded by a sum of the shown differences (see Appx. C.1).

1
MVarWm

[h
(LN)
Wm

(x)]. Moreover, since the variance of a single RF model is inversely proportional
to the number of features (exactly in the case of Gaussian features and approximately in the general
case, as discussed above), we have that VarW∗ [h

(LN)
W∗ (x)] / VarWm

[h
(LN)
Wm

] ≍ 1/M . Altogether,
this suggests that the generalization error of finite ensembles and finite-width single models decay
at similar rates. We confirm this similar rate of decay in Fig. 5 and Appx. A.3, which compare
ensembles versus single models under various feature budgets.

These results further demonstrate that ensembles offer no meaningful generalization advantage over
single models. Moreover, since Theorem 1 and the arguments above hold under any test distribu-
tion, they align with empirical findings (Abe et al., 2022) that ensembles do not provide robustness
benefits beyond those achievable with larger single networks.

3.3 EQUIVALENCE OF THE LIMITING PREDICTORS IN THE SMALL RIDGE REGIME

Having established the pointwise equivalence between infinite ensembles and infinite-width single
models in the ridgeless regime, we now investigate whether this equivalence approximately persists
in the practically relevant setting when a small ridge regularization parameter λ > 0 is introduced.
More generally, we aim to determine whether the transition from the ridgeless case to the small ridge
regime is smooth. While h

(RR)
∞,λ , the infinite-width limit of h(RR)

W,λ as |W| = D → ∞, almost surely

converges to the kernel ridge regressor with ridge λ, the infinite ensemble h̄
(RR)
∞,λ := EW [h

(RR)
W,λ (x)]

does not generally maintain pointwise equivalence with h
(RR)
∞,λ . This divergence occurs even un-

der the Gaussian universality assumption (Jacot et al., 2020). However, we hypothesize that the
difference between these limiting predictors is small when λ is close to zero, which is common in
practical applications. To analyze this regime, we introduce a minor additional assumption, which
is strictly stronger than the Gaussian universality assumption:

Assumption 2. We assume that EW [
(
ΦWΦ⊤

W
)−1

] is finite for all |W| = D > N .

Under Assumptions 1 and 2, we show that the difference is Lipschitz-continuous with respect to λ:

Theorem 2 (The difference between ensembles and large single models is smooth with respect
to λ.). Under Assumptions 1 and 2, the difference |h̄(RR)

∞,λ (x∗) − h
(RR)
∞,λ (x∗)| between the infinite

ensemble and the single infinite-width model trained with ridge λ is Lipschitz-continuous in λ for
λ ≥ 0. The Lipschitz constant is independent of x∗ for compact X .

Proof sketch. We first prove a lemma that shows the predictions of infinite-width RF regressors
h
(RR)
∞,λ (x∗) are Lipschitz-continuous in λ (see Lemma 3). Using a similar proof strategy and noting

9
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that an equivalent statement to Lemma 1 holds in the ridge regime, we also prove that the predictions
of infinite ensembles h̄(RR)

∞,λ (x∗) are Lipschitz-continuous in λ (see Lemma 4). In Fig. 6, we show
how the differences between these predictions and their ridgeless counterparts evolve with respect
to λ for various test points. Combining these two results and using a triangle inequality yields our
theorem. For the full proof, see Appx. C.1.

It is worth noting that even under the stronger assumptions of Jacot et al. (2020), the behavior of
the infinite ensemble and the infinite-width model as λ → 0 was not fully characterized, as their
bounds become vacuous in this limit. Since Theorem 1 ensures that |h̄(RR)

∞,λ (x∗) − h
(RR)
∞,λ (x∗)| = 0

for λ = 0, we can conclude that the pointwise difference grows at most linearly with λ. Specifically,
we have the following bound ∣∣∣h̄(RR)

∞,λ − h
(RR)
∞,λ (x)

∣∣∣ ≤ C · λ,
for some constant C independent of x∗, provided that X is compact. In practical terms, this result
indicates that for sufficiently small values of λ, the predictions of large ensembles and large single
models remain nearly indistinguishable, reinforcing our findings from the ridgeless regime.

4 CONCLUSION

For Question 1, we demonstrated that under weak conditions, infinite ensembles, and single infinite-
width models are pointwise equivalent in the ridgeless regime and nearly identical with a small
ridge, significantly expanding on prior results (e.g. Jacot et al., 2020). These results verify recent
empirical findings (e.g. Abe et al., 2022) that much of the benefit attributed to overparameterized
ensembles, such as improved predictive performance and robustness, can be explained by their sim-
ilarity to larger single models. We contrast these findings to the underparameterized regime, where
ensembling typically induces regularization and improves generalization. Similarly, for Question 2,
we argued that the variance reduction from ensembling is asymptotically equivalent to increasing
the number of features of a single model. This result further strengthens our findings on Question 1
and demonstrates functional similarities under relatively small computational budgets. For Question
3, we found that the ensemble variance measures the expected difference to a single larger model
and is thus a non-standard measure for uncertainty. Significant deviations from the Gaussian pro-
cess posterior variance indicate that caution is needed when using ensemble variance for uncertainty
quantification, especially in safety-critical settings. Again, these results reinforce empirical findings
from (Abe et al., 2022) about overparameterized neural network ensembles.

Overall, while our results do not contradict the utility of overparameterized ensembles, they suggest
that their benefits may often be explained by their similarity to larger models and that further research
is needed to improve uncertainty quantification methods.

Limitations. The practical implications of our work are limited by the theoretical abstractions we
employ. While these abstractions provide valuable theoretical insights, they may not always hold
in real-world, finite settings. Most notably, we approximate neural networks using RF models and
focus on infinite single models and infinite ensembles as approximations for large models and large
ensembles. Nevertheless, we emphasize that our theoretical results on RF regressors align with
recent empirical observations on deep ensembles (Abe et al., 2022; Theisen et al., 2024), further
supporting the growing body of work that uses RF models to provide insights into deep learning
phenomena (e.g. Belkin et al., 2019; Hastie et al., 2022; Simon et al., 2024).

In addition to these theoretical assumptions, our empirical results are constrained in terms of scale
and complexity. Due to numerical stability issues (see Appx. A.2), we primarily considered a small
number of samples, a relatively large number of random features, and simple data-generating func-
tions. Again, we refer the readers to the afformentioned empirical work for larger-scale experiments.

REPRODUCIBILITY AND ETHICS STATEMENTS

Reproducibility. The primary contribution of this paper is a theoretical analysis to explain empir-
ical phenomena studied in the recent works of Abe et al. (2022; 2024); Theisen et al. (2024). All
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proofs and derivations are largely self-contained, either in the main text or the appendix. We supply
references to all background material where applicable.

Empirical results are not the main focus of this work. Nevertheless, we provide the simulation code
used to generate all figures in the text, and a complete description of the experiments can be found in
Appx. A.1. We also include a discussion on the numerical stability of our experiments in Appx. A.2.

Ethics. We believe there are no significant ethical concerns stemming from this work, as it is
largely a theoretical analysis of previous empirical results. However, we do note that this work
studies ensembles of neural networks and their uncertainty estimates, which have the potential to be
used in safety-critical applications (Lakshminarayanan et al., 2017; Ovadia et al., 2019).
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Figure 7: True function f(x) = sin(5 · b⊤x) with different random seeds. The blue line shows
the true function, while red dots represent training samples for two distinct random seeds.

In the appendix, we will provide the following additional results:

1. In Appx. A, we will describe our experimental setup in more detail, difficulties we encoun-
tered when developing the experiments, and provide the results of additional experiments.

2. In Appx. B we will give the proofs for Secs. 3.1 and 3.2 in the main paper.

3. In Appx. C we will give the proofs for Sec. 3.3 in the main paper.

4. Finally, in Appx. D, we prove (under mild assumptions) that infinite underparameterized
RF ensembles are equivalent to kernel ridge regression under some transformed kernel.

A EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

The code to run all our experiments was attached to the submission. It contains a README.md file
that explains how to set up and run the experiments.

A.1 EXPERIMENTAL SETUP

We had two setups using which we performed most of our experiments:

1. We generate training and test points uniformly at random from [−5, 5]d using the function
f(x) = sin(5 · b⊤x), where b is a vector (depending on the random seed) and the noise
parameter is σ = 0.05 (we assume Gaussian noise with mean 0). In this setting, we use
N = 6, D = 200, and data from R (i.e., d = 1) if not specified otherwise. You can find a
plot of an example true function in Fig. 7.

2. We use the California Housing (Kelley Pace & Barry, 1997) dataset and sample distinct
training and test points from it (randomly permutating the dataset initially). In this setting,
we use N = 12, D = 200 if not differently specified. The data dimension is R8 here. In
contrast to the first setting, we employ a data normalization using a max-min normalization
on the entire dataset since we experimentally found this makes our methods more stable.

We calculate the generalization error using N = 1000 test points in both settings. In the first setting,
we calculate the variance of the predictions of a single model using M = 20, 000 models, while in
the second setting, we use M = 4, 000 models. Apart from Fig. 2 where we use 100, 000 samples,
“infinite” ensembles consist of M = 10, 000 models.

As distribution τ(·) of the elements ωi ∈ W we always use N (0, I). As activation functions, we
use ReLU, the Gaussian error function, and the softplus function 1

β · log(1 + exp(β · ω⊤x)) with
β = 1. For the first two activation functions, there exist analytically calculatable limiting kernels,
the arc-cosine kernel (Cho & Saul, 2009) and the erf-kernel (Williams, 1996). The closed forms for
these are

karc-cosine(x, x
′) =

1

2π
∥x∥∥x′∥ (sin θ + (π − θ) cos θ) ,

14
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x0

x 1

Training Points after transformation

Line x0 = 1

Hyperplane of ω1

Hyperplane of ω2

Figure 8: Visualization of hyperplanes separating training points. We illustrate how a series of
hyperplanes can separate a growing subset of the training points, leading to a triangular, invertible
matrix structure as a subset of Φ.

where θ = cos−1
(

x⊤x′

∥x∥∥x′∥

)
and

kerf(x, x
′) =

2

π
sin−1

(
2x⊤x′√

(1 + 2∥x∥2)(1 + 2∥x′∥2)

)
.

For the softplus function, we approximate the kernel by estimating the second moment k(x, x′) =
E[ϕ(ω, x)ϕ(ω, x′) | x, x′] of the feature extraction using 107 samples from τ(·). For sampling Gaus-
sian features (i.e., testing under the assumption Gaussian universality), we use the same approach
as described by Jacot et al. (2020).

Before training on data, we always append a 1 in the zeroeth-dimension of the data before calculating
the dot product with ω (correspondingly, the dimension of ω is d + 1) and applying the activation
function. In the ridgeless case, we use λ = 10−8 to avoid numerical issues.

A.2 NOTES ON STABILITY

During our experiments, we encountered challenges related to both mathematical stability (i.e., ma-
trices being truly singular rather than nearly singular) and numerical stability. This section outlines
these issues and describes the steps we took to mitigate them.

Most importantly, the matrix ΦWΦ⊤
W is not almost surely invertible when using the ReLU activation

function, meaning that technically, the second condition of our Assumption 1 is not fulfilled. In
numerical experiments, this results in cases where (ΦWΦ⊤

W)−1 is nearly singular (though stabilized
with λ = 10−8).

On the other hand, when D is sufficiently large relative to N , ΦW is full rank with high probabil-
ity, which implies that ΦWΦ⊤

W is invertible with high probability. Given our data transformation
of appending a 1 in the zeroeth dimension, one can see this as there exists a series of (non-zero
probability sets of) hyperplanes separating an increasing subset of the training points, leading to
a subset of ΦW ’s columns that form a triangular, invertible matrix (see Fig. 8 for a visualization).
Intuitively, higher data dimensionality and better separability of the points increase the probability
of ΦW having full rank.

As an example of the discussed instabilities, see the adversarial scenario shown in Fig. 9, where
N = 15 and many training points are placed very close to each other. In this case, individual
RF regressors exhibit relatively high variance output values (due to numerical instabilities), which
are not averaged out in the “infinite” ensemble. Similar issues were also observed when using the
Gaussian error function as the activation function, although they were generally less pronounced.

To alleviate these issues, we used the following approaches:

• We used a relatively low number of samples, N = 6 or N = 12, compared to D = 200.
As shown in Fig. 1, even with D = 200, there is still a considerable amount of variance in
the RF regressors (i.e., the individual RF regressors are not yet closely approximating the
limiting kernel ridge regressor).

15
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Figure 9: An adversarial example where the infinite ensemble of overparameterized RF models
is numerically not equivalent to a single infinite-width RF model. (Left) We show a sample
of 100 RF models (blue) with ReLU activations trained on the same N = 15 densely clustered
data points. Additionally, we show the single infinite-width RF model (pink). (Right) We again
show the single infinite-width RF model (blue) and the “infinite” ensemble of M = 10, 000 RF
models (pink). A significant difference between the two models is observed in this adversarial case,
indicating instability.
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Figure 10: Using softplus activations instead of ReLU activations reduces instabilities in over-
parameterized RF ensembles. The plots show the average absolute difference between the predic-
tions of an infinite ensemble and a single infinite-width model for varying feature counts D, using
N = 12 training samples from the California Housing dataset. (Left) ReLU activations exhibit
significant instability, especially for D > N,D ≈ N , and do not consistently show the expected
pointwise equivalence between the infinite ensemble and the single infinite-width model. (Right)
Softplus activations — as equivalently shown in Fig. 3 — smooth out these instabilities and more
consistently show the expected pointwise equivalence.
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Figure 11: Variance and r2⊥ for different activations and dimensions. (Top left) Variance of
RF model predictions across the input range for D = 200 and N = 6, using the erf activation
function. (Top right) Corresponding r2⊥ values across the input range using the erf kernel. (Bottom
left) Variance of RF model predictions across the input range for D = 200, p = 2, and N = 12,
using the ReLU activation function. (Bottom right) Corresponding r2⊥ values across the input range
using the arc-cosine kernel.

• We appended a 1 in the zeroeth dimension of the data before calculating the dot product
with ω.

• We performed additional experiments using the softplus function with β = 1 as a smooth
approximation of the ReLU activation function. This often helped stabilize the numerical
computations, as seen in Fig. 10, where we repeated a part of the experiment from Fig. 3
using the ReLU function as activation function which increased the numerical instability
for low D values.

• We used a ridge term λ = 10−8 in the ridgeless case to stabilize the inversion of ΦWΦ⊤
W .

• We used double precision for all computations and used the torch.linalg.lstsq
function with the driver gelsd (for not-well-conditioned matrices) to solve linear systems.

• We applied max-min normalization to the entire California Housing dataset to improve
stability.

A.3 ADDITIONAL EXPERIMENTS FOR THE RIDGELESS CASE

Additional experiments on the ensemble variance. We observed a different behavior of the RF
regressor variance and r2⊥ as shown in Fig. 4 consistently across different random seeds and dimen-
sions for both ReLU and the Gaussian error function activations as activation functions. In Fig. 11,
we present additional examples for the Gaussian error function in one dimension and the ReLU
activation in two dimensions.

Additional experiment on generalization error and variance scaling. In Fig. 5, we demon-
strated variance and generalization error decay for the ReLU activation function. To verify the
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Figure 12: Variance and generalization error scale similarly with the number of features, con-
sistent with Fig. 5. In (a), the variance of a single model with MD features decays as ∼ 1

MD ,
matching the ensemble’s behavior. In (b), the generalization error of an ensemble with M models
and D = 200 features shows a similar decay to that of a single model with MD features. Results
use the Gaussian error function, California Housing dataset, and N = 12.
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Figure 13: Empirically, the term EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]

is consis-
tently zero. We show the empirical distribution of the third—just because it looks more
interesting—index of w⊤

⊥W
⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1 ∈ RN , which captures the difference

in predictions between c⊤EW,w⊥

[
WW⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y and a finite-sized

overparameterized RF model (see Eq. (6)). We use λ = 1.0 in both plots. (Left) We use a ReLU
activation function, xi ∈ R, and N = 6, D = 200. (Right) We use the Gaussian Error Function as
activation function, the California Housing dataset, and N = 12, D = 200.

consistency of these trends, we repeated the experiment using the Gaussian error function and the
corresponding erf-kernel. The results are very similar, shown in Fig. 12.

A.4 MORE EXPERIMENTS FOR THE RIDGE CASE

Additional experiments for the convergence of the expected value term. In Appx. C, we show
that a variant of Lemma 1 also holds in the ridge case. More precisely, we show that

EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
= 0

under Assumption 1. We repeated the experiment from Fig. 2 for the ridge case to verify this
experimentally. The results are shown in Fig. 13.

Additional notes. In Fig. 6, we illustrate the Lipschitz continuity of the predictions for an infinite
ensemble and a kernel regressor with respect to the ridge parameter. Rather than directly presenting
the difference

∣∣∣h̄(RR)
∞,λ (x∗)− h

(RR)
∞,λ (x∗)

∣∣∣, we show the evolution of
∣∣∣h̄(RR)

∞,λ (x∗)− h̄
(LS)
∞ (x∗)

∣∣∣ and

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

∣∣∣h(RR)
∞,λ (x∗)− h

(LS)
∞ (x∗)

∣∣∣. This choice was made because the upper bound we obtained was not
consistently tight for settings with large D. In particular, the pointwise predictions of the infinite
ensemble h̄

(RR)
∞,λ and the single infinite-width model h(RR)

∞,λ trained with ridge λ were already very
close for non-zero λ. We opted to display the upper bounds rather than the direct difference to avoid
cherry-picking favorable settings.

Our best explanation for this phenomenon is that infinite ensembles under Assumption 1 in the
ridge regime often behave similarly to the single infinite-width model h(RR)

∞,λ̃
with an implicit ridge

parameter λ̃, which solves the equation

λ̃ = λ+
λ̃

D

N∑
i=1

di

λ̃+ di

where di are the eigenvalues of the kernel matrix K, as shown by Jacot et al. (2020) under Gaussian
universality. Intuitively and empirically, for large D, the implicit ridge λ̃ tends to be very close to
the true ridge λ. Using Lemma 3, this suggests that for small values of λ, the difference between the
infinite ensemble and the infinite-width single model h(RR)

∞,λ with ridge λ is already minimal before
λ approaches zero.

Interestingly, our findings (see Fig. 3) suggest that in the ridgeless case, the similarity to the ridge
regressor with the implicit ridge only holds in the overparameterized regime. Note that this does not
violate the results from Jacot et al. (2020) since the constants in their bounds blow up as λ → 0 in
both the underparameterized and overparameterized regimes.

B PROOFS FOR OVERPARAMETERIZED RIDGELESS REGRESSION

B.1 EQUIVALENCE OF INFINITE ENSEMBLE AND INFINITE SINGLE MODEL.

We start by proving the equivalent formulation of the infinite ensemble prediction stated in Eq. (2)
using the terms W and w⊥ as introduced in Sec. 2:

Proof. Defining ϕ∗
W = [ϕ(ωi, x

∗)]i ∈ RD, we have

h̄∞(x∗) = EW

[
1
Dϕ∗

WΦ⊤
W
(

1
D · ΦWΦ⊤

W
)−1
]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
)
W⊤R

(
R⊤WW⊤R

)−1
]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
)
W⊤ (WW⊤)−1

]
R−⊤y

= c⊤R−⊤y + r⊥EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤)−1

]
R−⊤y, (5)

where c,R, r⊥ are as defined in Eq. (1). The left term in Eq. (5) is equal to h
(LN)
∞ (x):

h(LN)
∞ (x∗) = [k(xi, x

∗)]
N

i=1
K−1y = c⊤RR−1R−⊤y = c⊤R−⊤y.

In the case of λ > 0, we can similarly see that

h̄
(RR)
∞,λ (x∗) = EW

[
1
Dϕ∗

WΦ⊤
W
(

1
D · ΦWΦ⊤

W + λI
)−1
]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
)
W⊤R

(
R⊤WW⊤R+D · λ ·R⊤R−⊤R−1R

)−1
]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
)
W⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y

= c⊤EW,w⊥

[
WW⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y

+ r⊥EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y. (6)
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Note that the simplification demonstrated in Eq. (2) does not work as nicely in the underparameter-
ized case (D ≤ N ). This is because the weights, in this case, are given by θ = (Φ⊤

WΦW)−1Φ⊤
Wy,

and thus the infinite ensemble prediction expands as:

h̄∞(x∗) = EW

[
ϕ∗
W
(
Φ⊤

WΦW
)−1

Φ⊤
W

]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
) (

W⊤RR⊤W
)−1

W⊤R
]
y.

Here, RR⊤ lies inside the inverse, preventing the simplifications available in the overparameterized
regime.

Next up, we show that the expected value EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤)−1

]
is zero under Assumption 1.

This directly implies the pointwise equivalence of the infinite ensemble and the single infinite-width
model (see Theorem 1).

Lemma 1 (Restated). Under Assumption 1, it holds that EW,w⊥ [w
⊤
⊥W

⊤(WW⊤)−1] = 0.

Proof. Define A−i = (WW⊤ − wiw
⊤
i ). Note that A−1 is almost surely invertible and positive

definite by assumption Assumption 1.

By the Woodbury formula, for almost every WW⊤ we have that

(WW⊤)−1 = (A−i + wiw
⊤
i )

−1 = A−1
−i −

A−1
−iwiw

⊤
i A−1

−i

1+w⊤
i A−1

−iwi
,

which implies that

w⊤
⊥W

⊤(WW⊤)−1 =
∑D

i=1 w⊥iw
⊤
i

(
A−1

−i −
A−1

−iwiw
⊤
i A−1

−i

1+w⊤
i A−1

−iwi

)
=
∑D

i=1 w⊥i

(
w⊤

i
A−1

−i+w⊤
i A−1

−iw
⊤
i A−1

−iwi

1+w⊤
i A−1

−iwi
− w⊤

i A−1
−iwiw

⊤
i A−1

−i

1+w⊤
i A−1

−iwi

)
=
∑D

i=1
w⊥iw

⊤
i

1+w⊤
i A−1

−iwi
A−1

−i .

For any positive definite matrix B ∈ RN×N and any vector v ∈ RN ; ∥v∥ = 1 and any
i ∈ {1, ..., D}, we have∣∣∣Ew⊥i,wi

[
w⊥iw

⊤
i

1+w⊤
i Bwi

]
v
∣∣∣ ≤ Ew⊥i,wi

[∣∣∣ w⊥iw
⊤
i v

1+w⊤
i Bwi

∣∣∣]
=

∫ ∞

0

P
[∣∣∣ w⊥iw

⊤
i v

1+w⊤
i Bwi

∣∣∣ ≥ t
]
dt

=

∫ ∞

0

P
[∣∣w⊥iw

⊤
i v
∣∣ ≥ (1 + w⊤

i Bwi

)
t
]
dt

≤
∫ ∞

0

P
[∣∣w⊥iw

⊤
i

∣∣ > t
]
dt

≤
∫ ν2/α

0

2 exp
(
− t2

2ν

)
dt+

∫ ∞

ν2/α

2 exp
(
− t

2α

)
dt, (7)

where the last inequality is a standard sub-exponential bound applied to w⊥iwi. Note that we here
use the fact that E[w⊥iw

⊤
i ] = 0 and the (ν2, α)-sub-exponentiality of

∣∣w⊥iw
⊤
i

∣∣.
Since the last two integrals in Eq. (7) are finite, the expectation EW,w⊥

[
(w⊥iw

⊤
i )/(1 + w⊤

i Bwi)
]
v

is finite. By the weak law of large numbers, for i.i.d. random variables w(j)
i and w

(j)
⊥i across different

j’s, we have

P
[∣∣∣∣ 1

M

∑M
j=1

w
(j)
⊥i (w

(j)
i )⊤v

1+(w
(j)
i )⊤Bw

(j)
i

− EW,w⊥

[
w⊥iw

⊤
i

1+w⊤
i Bwi

]
v

∣∣∣∣ > t

]
→ 0,
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for any t > 0 and v ∈ RN such that ∥v∥ = 1 as M → ∞. At the same time, repeating the
sub-exponential argument above, we have that

P
[∣∣∣∣ 1

M

∑M
j=1

w
(j)
⊥i (w

(j)
i )⊤v

1+(w
(j)
i )⊤Bw

(j)
i

∣∣∣∣ > t

]
≤ P

[∣∣∣ 1
M

∑M
i=1 w

(j)
⊥i (w

(j)
i )⊤v

∣∣∣ > t
]

≤
{
2 exp

(
−Mt2

2ν

)
0 < t ≤ ν2/α

2 exp
(
−Mt

2α

)
t > ν2/α

→ 0

as M → ∞. Here we use the property that the sum of M (ν2, α)-sub-exponential random variables
is (Mν2, α)-sub-exponential.

Together, these results imply that EW,w⊥

[
(w⊥iw

⊤
i )/(1 + w⊤

i Bwi)
]
= 0 for every positive definite

B. Since the random matrix A−i is positive semidefinite, almost surely invertible (by the second
half of Assumption 1), and independent of wi, w⊥i, we have that

Ew⊥,W

[
w⊥W

⊤ (WW⊤)−1
]
=
∑D

i=1 Ew⊥i,wi,A−i

[
w⊥iw

⊤
i

1+w⊤
i A−1

−iwi
A−1

−i

]
=
∑D

i=1 EA−i

[
Ew⊥i,wi

[
w⊥iw

⊤
i

1+w⊤
i A−1

−iwi

]
A−1

−i

]
= 0.

We remark that this proof equivalently holds for the ridge-regression case, i.e.,
EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]

= 0 since the proof does not rely on the
specific form of the matrix A−i other than it being positive definite. Thus by Eq. (6) we directly get
that under Assumption 1 it holds that

h̄
(RR)
∞,λ (x∗) = c⊤EW,w⊥

[
WW⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y. (8)

B.2 VARIANCE OF ENSEMBLE PREDICTIONS.

In the next step, we show the formula for the variance of a single model prediction under Gaussian
universality. Note that one could also get this result by slightly extending proofs by Jacot et al.
(2020).

Lemma 2 (Variance of single model predictions). Under Gaussian universality and assuming D >
N + 1, the variance of single model prediction at a test point x∗ is given by

VarW [h
(LN)
W (x∗)] = r2⊥

∥h(LN)
∞ ∥2H

D −N − 1
, (9)

where ∥ · ∥H is norm defined by the RKHS associated with kernel k(·, ·).

Proof. We start by writing down the variance of the prediction of a single model:

VarW [h
(LN)
W (x∗)] = EW [h

(LN)
W (x∗)2]− EW [h

(LN)
W (x∗)]2
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Using Theorem 1, the definition of the prediction of a single model and the definition of W and w⊥,
we can expand this expression:

= EW [ϕ∗
WΦ⊤

W(ΦWΦ⊤
W)−1yy⊤(ΦWΦ⊤

W)−⊤ΦWϕ∗⊤
W ]− (h(LN)

∞ (x∗))2

= EW,w⊥ [(r⊥w
⊤
⊥ + c⊤W )W⊤R

(
R⊤WW⊤R

)−1
yy⊤

(
R⊤WW⊤R

)−⊤
R⊤W (r⊥w

⊤
⊥ + c⊤W )⊤]

− (h(LN)
∞ (x))2

= EW,w⊥ [(r⊥w
⊤
⊥ + c⊤W )W⊤ (WW⊤)−1

R−⊤yy⊤R−1
(
WW⊤)−⊤

W (r⊥w
⊤
⊥ + c⊤W )⊤]

− (h(LN)
∞ (x))2

= (c⊤R−⊤y)2 − (h(LN)
∞ (x))2

+ 2 · r⊤⊥EW,w⊥ [w
⊤
⊥W

⊤(WW⊤)−1]R−⊤yy⊤R−1c

+ r2⊥EW,w⊥ [w
⊤
⊥W

⊤(WW⊤)−1R−⊤yy⊤R−1(WW⊤)−TWw⊥]

Now we can see that the first two terms cancel out (since h
(LN)
∞ (x) = c⊤R−⊤y) and the third term

is zero by Lemma 1. We are left with the fourth term, which we can slightly rewrite:

VarW [h
(LN)
W (x∗)] = r2⊥EW,w⊥ [w

⊤
⊥W

⊤(WW⊤)−1R−⊤yy⊤R−1(WW⊤)−TWw⊥]

= r2⊥y
⊤R−1EW,w⊥ [(WW⊤)−TWw⊥w

⊤
⊥W

⊤(WW⊤)−1]R−⊤y (10)

Using the tower rule for conditional expectations, we have:

VarW [h
(LN)
W (x)] = r2⊥y

⊤R−1EW,w⊥ [(WW⊤)−TWw⊥w
⊤
⊥W

⊤(WW⊤)−1]R−⊤y

= r2⊥y
⊤R−1EW [(WW⊤)−TWEw⊥|W [w⊥w

⊤
⊥|W ]W⊤(WW⊤)−1]R−⊤y

Since the Gaussian universality assumption implies W and w⊥ are independent, we get:

VarW [h
(LN)
W (x)] = r2⊥y

⊤R−1EW [(WW⊤)−TWEw⊥ [w⊥w
⊤
⊥]W

⊤(WW⊤)−1]R−⊤y

Moreover, since by Gaussian universality w⊥ and W are multivariate Gaussians with the identity
matrix as covariance, we get (via the expected value of a Wishart and an inverse Wishart distribution;
note that for getting this expected value, we need to assume that D > N + 1):

VarW [h
(LN)
W (x)] = r2⊥y

⊤R−1EW [(WW⊤)−T (WW⊤)(WW⊤)−1]R−⊤y

= r2⊥y
⊤R−1EW [(WW⊤)−T ]R−⊤y

= r2⊥
y⊤R−1R−⊤y

D−N−1

= r2⊥
y⊤K−1y
D−N−1 .

Recognizing that y⊤K−1y = ∥h(LN)
∞ ∥2H (e.g. Wainwright, 2019, Ch. 12) completes the proof.

An equivalent argument does not work under the more general Assumption 1 since w⊥ and W
are not necessarily independent. Even in the case of independence, EW [(WW⊤)−1] might not be
known.

Counterexample for subexponential case. We now give an explicit counterexample showing that
when only assuming uncorrelatedness between W and w⊥ the term

E := EW,w⊥ [(WW⊤)−TWw⊥w
⊤
⊥W

⊤(WW⊤)−1]

from Eq. (10) depends on x∗ implying that the variance does not only depend on x∗ via r2⊥.

Let us assume N = D = 1 and let W be uniformly distributed across the set{
− 4√

12.5
,− 3√

12.5
, 3√

12.5
, 4√

12.5

}
. Then we have E[W ] = 0 and E[W 2] = 1

2 · 16
12.5 + 1

2 · 9
12.5 = 1.
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Now consider an x∗ that produces a w⊥ so that w⊥ =
√
2 when W =

{
− 3√

12.5
, 3√

12.5

}
and

w⊥ = 0 otherwise. Then we have E[w⊤
⊥W ] = 0 and E[w2

⊥] = 1. The value of E is now 12.5
9 .

Furthermore, consider an x∗ that produces a w⊥ so that w⊥ =
√
2 when W =

{
− 4√

12.5
, 4√

12.5

}
and w⊥ = 0 otherwise. Then we have E[w⊤

⊥W ] = 0 and E[w2
⊥] = 1. The value of E is now 12.5

16 .

C PROOFS FOR OVERPARAMETERIZED RIDGE REGRESSION

C.1 DIFFERENCE BETWEEN THE INFINITE ENSEMBLE AND INFINITE SINGLE MODEL.

We begin with a lemma, which shows that the prediction of kernel regressors is Lipschitz-continuous
in λ for any x∗ and λ ≥ 0. We will denote the kernel ridge regressor with regularization parameter
λ as h(RR)

∞,λ , as introduced in Sec. 3.3.

Lemma 3 (Bound on the difference between the kernel ridge regressors). Let λ, λ′ ≥ 0 be two
regularization parameters. Then, for any x∗ ∈ X it holds that:

|h(RR)
∞,λ′ (x

∗)− h
(RR)
∞,λ (x∗)| ≤ √

n · C1 · |λ′ − λ| ·
√
yTK−4y

where we assume k(xi, x
∗) ≤ C1 for all i ∈ [N ].

Proof. We can write the kernel ridge regressors as h
(RR)
∞,λ (x∗) =

∑n
i=1 α1,ik(xi, x

∗) and

h
(RR)
∞,λ′ (x∗) =

∑n
i=1 α2,ik(xi, x

∗) with coefficients α1 and α2 given by:

α1 = (K + λI)−1y

α2 = (K + λ′I)−1y

We now write y in the orthonormal basis of the eigenvectors of K, i.e. y =
∑n

i=1 aivi. We call the
corresponding eigenvalues of K d1, . . . , dn > 0.

The matrix (K+λI)−1 has the same eigenvectors as K and the eigenvalues are 0 < d̃i =
1

di+λ ≤ 1
λ .

Thus, we can write α1 =
∑n

i=1 ai
1

di+λvi and α2 =
∑n

i=1 ai
1

di+λ′ vi.

In the next step, we bound ∥α1 − α2∥22: Using the orthonormality of the eigenvectors, we get:

∥α1 − α2∥22 =
∑n

i=1

(
ai

(
1

di+λ − 1
di+λ′

))2
Now we bound

∣∣∣ 1
λ+di

− 1
λ′+di

∣∣∣ ≤ ∣∣∣ λ′−λ
λλ′+(λ+λ′)di+d2

i

∣∣∣ ≤ |λ′−λ|
d2
i

which gives us:

∥α1 − α2∥22 ≤∑n
i=1

(
ai|λ′−λ|

d2
i

)2
≤ |λ′ − λ|2yTK−4y

Using this result, we can bound the difference between the predictions of the two kernel regressors
at a single point x∗:

|h(RR)
∞,λ (x∗)− h

(RR)
∞,λ′ (x

∗)| = |∑n
i=1(α1,i − α2,i)k(xi, x

∗)| ≤∑n
i=1 |α1,i − α2,i|k(xi, x

∗)

Since k(xi, x
∗) ≤ C1, we get (using the relation between the 1-norm and the 2-norm):

|fλ(x∗)− fλ′(x∗)| ≤ C1

∑n
i=1 |α1,i−α2,i| ≤ C1∥α1−α2∥2

√
n ≤ √

n ·C1 · |λ′−λ| ·
√
y⊤K−4y

Using similar arguments, we now show that the expected prediction of RF regressors, i.e., the pre-
diction of the infinite ensemble of RF regressors, is Lipschitz-continuous for any x∗ and λ ≥ 0:
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Lemma 4 (Bound on the difference between expected RF Regressors). Under Assumption 1 and
Assumption 2, the expected value of the prediction of RF regressors is Lipschitz-continuous in λ for
any x∗ and λ ≥ 0, i.e., for any x∗ it holds that:

|h̄(RR)
∞,λ′ (x

∗)− h̄
(RR)
∞,λ (x∗)| ≤ ∥c⊤R−⊤∥∥y∥DC2 |λ′ − λ|

where C2 is a constant depending on the distribution of Φ.

Proof. We use the characterization of h̄(RR)
∞,λ (x∗) from Eq. (8), which gives us the difference as∣∣∣c⊤EW,w⊥

[
WW⊤

((
WW⊤ +D · λ′ ·R−⊤R−1

)−1 −
(
WW⊤ +D · λ′ ·R−⊤R−1

)−1
)]

R−⊤y
∣∣∣ .

We can now reverse some steps we made to get this characterization and write it in terms of Φ again:∣∣∣c⊤R−⊤EW

[
ΦWΦ⊤

W

((
ΦWΦ⊤

W +D · λ′ · I
)−1 −

(
ΦWΦ⊤

W +D · λ · I
)−1
)]

y
∣∣∣ .

And now, using Jensen’s inequality and the convexity of the two-norm, we can pull out the expected
value to the outside of the difference:

∥c⊤R−⊤∥ · EW

[
∥ΦWΦ⊤

W

((
ΦWΦ⊤

W +D · λ′ · I
)−1 −

(
ΦWΦ⊤

W +D · λ · I
)−1
)
y∥
]
.

Similarly to the proof of Lemma 3, we can write y in the orthonormal basis of the eigenvectors of
ΦΦ⊤ (note that we drop the subscript W for notational simplicity), i.e. y =

∑n
i=1 aivi. Furthermore

we define the eigenvalues of ΦΦ⊤ as d1, . . . , dn > 0. The matrix (ΦΦ⊤ +D · λI)−1 again has the
same eigenvectors as ΦΦ⊤ and the eigenvalues are 0 < 1

di+D·λ ≤ 1
D·λ .

Multiplying y with ΦΦ⊤(ΦΦ⊤ +D · λI)−1 and ΦΦ⊤(ΦΦ⊤ +D · λ′I)−1 then gives us:

ΦΦ⊤(ΦΦ⊤ +D · λI)−1y =
∑n

i=1 ai
di

di+D·λvi

ΦΦ⊤(ΦΦ⊤ +D · λ′I)−1y =
∑n

i=1 ai
di

di+D·λ′ vi

We can now calculate the difference of these two vectors using the orthonormality of the eigenvec-
tors:

∥ΦΦ⊤(ΦΦ⊤ +D · λ′I)−1y − ΦΦ⊤(ΦΦ⊤ +D · λI)−1y∥22 =
∑n

i=1

(
ai

(
di

di+D·λ − di

di+D·λ′

))2
Now we look at the difference between the two coefficients and see that for each i, we have:∣∣∣ di

di+D·λ − di

di+D·λ′

∣∣∣ ≤ D·|λ′−λ|
di

Thus, we have that the difference is bounded by:

∥ΦΦ⊤(ΦΦ⊤ +D · λ′I)−1y − ΦΦ⊤(ΦΦ⊤ +D · λI)−1y∥22 ≤ D2·|λ−λ′|2
d2
N

∥y∥22.

All together, we can now bound the difference of the expected values of the predictions of RF
regressors via:

|h̄(RR)
∞,λ′ (x

∗)− h̄
(RR)
∞,λ (x∗)| ≤ ∥c⊤R−⊤∥∥y∥D|λ′ − λ|EdN

[
1
dN

]
Since tr((ΦΦ⊤)−1) =

∑n
i=1

1
di

, and the trace is a linear operator, we can write:

EdN

[
1
dN

]
≤ EW

[
(tr(ΦWΦ⊤

W)−1)
]
= tr(EW

[
(ΦWΦ⊤

W)−1
]
) =: C2

which is finite whenever EW
[
(ΦWΦ⊤

W)−1
]

is finite, i.e. Assumption 2 holds.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Using Lemma 3 and Lemma 4 we can now show that the difference between the infinite ensemble
where each model has ridge λ and the infinite single model with ridge λ is Lipschtiz-continuous in
λ for λ ≥ 0:

Theorem 2 (Restated). Under Assumptions 1 and 2, the difference |h̄(RR)
∞,λ (x∗) − h

(RR)
∞,λ (x∗)| be-

tween the infinite ensemble and the single infinite-width model trained with ridge λ is Lipschitz-
continuous in λ for λ ≥ 0. The Lipschitz constant is independent of x∗ for compact X .

Proof. We bound difference
∣∣∣|h̄(RR)

∞,λ′ (x∗)− h
(RR)
∞,λ′ (x∗)| − |h̄(RR)

∞,λ (x∗)− h
(RR)
∞,λ (x∗)|

∣∣∣ by using first
the inverse, then the normal triangle inequality:∣∣∣|h̄(RR)

∞,λ′ (x
∗)− h

(RR)
∞,λ′ (x

∗)| − |h̄(RR)
∞,λ (x∗)− h

(RR)
∞,λ (x∗)|

∣∣∣
≤ |h̄(RR)

∞,λ′ (x
∗)− h̄

(RR)
∞,λ (x∗) + h

(RR)
∞,λ (x∗)− h

(RR)
∞,λ′ (x

∗)|
≤ |h̄(RR)

∞,λ′ (x
∗)− h̄

(RR)
∞,λ (x∗)|+ |h(RR)

∞,λ (x∗)− h
(RR)
∞,λ′ (x

∗)|

Using the bound from Lemma 3 and Lemma 4 (and summarizing the the corresponding constants as
c1 and c2) we can bound this by:

|h̄(RR)
∞,λ′ (x

∗)− h
(RR)
∞,λ′ (x

∗)| − |h̄(RR)
∞,λ (x∗)− h

(RR)
∞,λ (x∗)| ≤ c1|λ′ − λ|+ c2|λ′ − λ|

Thus we have Lipschitz-continuity in λ for λ ≥ 0.

The Lipschitz constant is independent of x∗ for X compact since the Lipschitz constants from
Lemma 3 and Lemma 4 depend on x∗ in a continuous fashion.

Note that an equivalent argument in combination with Jacot et al. (2020)[Proposition 4.2], i.e. λ̃ ≤
γ

γ−1λ, directly gives the Lipschitz-continuity in λ for λ ≥ 0 for the difference between the infinite
ensemble and the infinite-width single model with effective ridge in the overparameterized regime.

D UNDERPARAMETERIZED ENSEMBLES

Here, we offer a proof that infinite, unregularized, underparameterized RF ensembles are equivalent
to kernel ridge regression under a transformed kernel function. We emphasize the difference from the
overparameterized case—the central focus of our paper—in which the infinite ensemble is equivalent
to a ridgeless kernel regressor. Thus, underparameterized ensembles induce regularization, while
overparameterized ensembles do not.

Other works have explored the ridge behavior of underparameterized RF ensembles (Kabán, 2014;
Thanei et al., 2017; Bach, 2024a); however, these works often focus on an equivalence in generaliza-
tion error whereas we establish a pointwise equivalence. To the best of our knowledge, the following
result is novel:

Lemma 5. If the expected orthogonal projection matrix EW̃

[
R⊤W̃

(
W⊤RR⊤W

)−1
W̃⊤R

]
is

well defined, and a contraction (i.e., singular values strictly less than 1), then the infinite under-
parameterized RF ensemble h̄

(LN)
∞ (x∗) is equivalent to kernel ridge regression under some kernel

function k̃(·, ·).

Proof. When D < N , the infinite ridgeless RF ensemble is given by

h̄(LN)
∞ (x∗) = EW

[
1
D

∑D
j=1 ϕ(ωj , x

∗)
(

1
DΦ⊤

WΦW
)−1

Φ⊤
W

]
y

= EW,w⊥

[(
r⊥w

⊤
⊥ + c⊤W

) (
W⊤RR⊤W

)−1
W⊤

]
Ry, (11)

where W,w⊥, r⊥, c, R are as defined in Sec. 2. Defining the following block matrices:

W̃ =

[
W
w⊤

⊥

]
∈ R(N+1)×D, R̃ =

[
R
0

]
∈ R(N+1)×N , c̃ =

[
c
r⊥

]
∈ R(N+1),
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we can rewrite Eq. (11) as

h̄(LN)
∞ (x∗) = c̃⊤

(
EW̃

[
W̃
(
W⊤RR⊤W

)−1
W̃⊤

])
R̃y.

By adding and subtracting R̃R̃⊤ inside the outer parenthesis, we can massage this expression into
kernel ridge regression in a transformed coordinate system:

h̄(LN)
∞ (x∗) = c̃⊤

R̃R̃⊤ +
(
EW̃

[
W̃
(
W⊤RR⊤W

)−1
W̃⊤

])−1

− R̃R̃⊤

:=Ã


−1

R̃y.

= c̃⊤Ã−1R̃
(
R̃⊤Ã−1R̃+ I

)−1

y. (12)

Applying the Woodbury inversion lemma to Ã−1, we have:

Ã−1 = EW̃

[
W̃
(
W⊤RR⊤W

)−1
W̃⊤

]
+ EW̃

[
W̃
(
W⊤RR⊤W

)−1
W⊤R

]
(I − EW [PW ])

−1 EW̃

[
R⊤W

(
W⊤RR⊤W

)−1
W̃⊤

]
,

(13)
where PW is the (random) orthogonal projection matrix onto the span of the columns of R⊤W :

PW = R⊤W
(
W⊤RR⊤W

)−1
W⊤R.

Because PW is an orthogonal projection matrix, we have that ∥PW ∥2 = 1, and thus (by Jensen’s
inequality) ∥EW [PW ]∥2 ≤ 1. If this inequality is strict so that I − EW [PW ] is invertible, we have
by inspection of Eq. (13) that Ã is positive definite. Therefore, the block matrix[

R̃⊤

c̃⊤

]
Ã−1

[
R̃ c̃

]
=

[
R̃⊤Ã−1R̃ R̃⊤Ã−1c̃

c̃⊤Ã−1R̃ c̃⊤Ã−1c̃

]
(14)

is also positive definite and thus the realization of some kernel function k̃(·, ·); i.e.

[
R̃⊤Ã−1R̃ R̃⊤Ã−1c̃

c̃⊤Ã−1R̃ c̃⊤Ã−1c̃

]
=


k̃(x1, x1) · · · k̃(x1, xN ) k̃(x1, x

∗)
...

. . .
...

...
k̃(xN , x1) · · · k̃(xN , xN ) k̃(xN , x∗)

k̃(x∗, x1) · · · k̃(x∗, xN ) k̃(x∗, x∗)

 .

Note that if Ã = I then by Eq. (1) we recover the original kernel matrix

[
R̃⊤R̃ R̃⊤c̃

c̃⊤R̃ c̃⊤c̃

]
=


k(x1, x1) · · · k(x1, xN ) k(x1, x

∗)
...

. . .
...

...
k(xN , x1) · · · k(xN , xN ) k(xN , x∗)
k(x∗, x1) · · · k(x∗, xN ) k(x∗, x∗)

 .

Thus, the underparameterized ensemble in Eq. (12) simplifies to

h̄(LN)
∞ (x∗) =

[
k̃(x∗, x1) · · · k̃(x∗, xN )

]
 k̃(x1, x1) · · · k̃(x1, xN )

...
. . .

...
k̃(xN , x1) · · · k̃(xN , xN )

+ I


−1

y,

which is kernel ridge regression with respect to the kernel k̃(·, ·).
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